Temporal binding of sound emerges out of anatomical structure and synaptic dynamics of auditory cortex

نویسندگان

  • Patrick J. C. May
  • Hannu Tiitinen
چکیده

The ability to represent and recognize naturally occuring sounds such as speech depends not only on spectral analysis carried out by the subcortical auditory system but also on the ability of the cortex to bind spectral information over time. In primates, these temporal binding processes are mirrored as selective responsiveness of neurons to species-specific vocalizations. Here, we used computational modeling of auditory cortex to investigate how selectivity to spectrally and temporally complex stimuli is achieved. A set of 208 microcolumns were arranged in a serial core-belt-parabelt structure documented in both humans and animals. Stimulus material comprised multiple consonant-vowel (CV) pseudowords. Selectivity to the spectral structure of the sounds was commonly found in all regions of the model (N = 122 columns out of 208), and this selectivity was only weakly affected by manipulating the structure and dynamics of the model. In contrast, temporal binding was rarer (N = 39), found mostly in the belt and parabelt regions. Thus, the serial core-belt-parabelt structure of auditory cortex is necessary for temporal binding. Further, adaptation due to synaptic depression-rendering the cortical network malleable by stimulus history-was crucial for the emergence of neurons sensitive to the temporal structure of the stimuli. Both spectral selectivity and temporal binding required that a sufficient proportion of the columns interacted in an inhibitory manner. The model and its structural modifications had a small-world structure (i.e., columns formed clusters and were within short node-to-node distances from each other). However, simulations showed that a small-world structure is not a necessary condition for spectral selectivity and temporal binding to emerge. In summary, this study suggests that temporal binding arises out of (1) the serial structure typical to the auditory cortex, (2) synaptic adaptation, and (3) inhibitory interactions between microcolumns.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Dynamics of alaninaminotransferase activity in subcellular fractions of different areas of brain cortex and hypothalamus in postnatal ontogenesis under protein-free feeding regime and after its withdrawal

Total and specific activities of alaninaminotransferase (Al-AT) were determined in general tissues, mitochondrial and cytosol fractions of visual, orbital, motor, limbic areas of brain cortex and hypothalamus of three-month old and one-year old rats under 10-20 days and 30 days protein deprivation and under recovery of normal food regime during the same terms. It was found out that Al-AT activi...

متن کامل

Dynamics of alaninaminotransferase activity in subcellular fractions of different areas of brain cortex and hypothalamus in postnatal ontogenesis under protein-free feeding regime and after its withdrawal

Total and specific activities of alaninaminotransferase (Al-AT) were determined in general tissues, mitochondrial and cytosol fractions of visual, orbital, motor, limbic areas of brain cortex and hypothalamus of three-month old and one-year old rats under 10-20 days and 30 days protein deprivation and under recovery of normal food regime during the same terms. It was found out that Al-AT activi...

متن کامل

Selective deficits in human audition: evidence from lesion studies

The human auditory cortex is the gateway to the most powerful and complex communication systems and yet relatively little is known about its functional organization as compared to the visual system. Several lines of evidence, predominantly from recent studies, indicate that sound recognition and sound localization are processed in two at least partially independent networks. Evidence from human...

متن کامل

Selective deficits in human audition: evidence from lesion studies

The human auditory cortex is the gateway to the most powerful and complex communication systems and yet relatively little is known about its functional organization as compared to the visual system. Several lines of evidence, predominantly from recent studies, indicate that sound recognition and sound localization are processed in two at least partially independent networks. Evidence from human...

متن کامل

Integration over multiple timescales in primary auditory cortex.

Speech and other natural vocalizations are characterized by large modulations in their sound envelope. The timing of these modulations contains critical information for discrimination of important features, such as phonemes. We studied how depression of synaptic inputs, a mechanism frequently reported in cortex, can contribute to the encoding of envelope dynamics. Using a nonlinear stimulus-res...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2013